Package: EffectTreat 1.1
EffectTreat: Prediction of Therapeutic Success
In personalized medicine, one wants to know, for a given patient and his or her outcome for a predictor (pre-treatment variable), how likely it is that a treatment will be more beneficial than an alternative treatment. This package allows for the quantification of the predictive causal association (i.e., the association between the predictor variable and the individual causal effect of the treatment) and related metrics. Part of this software has been developed using funding provided from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Authors:
EffectTreat_1.1.tar.gz
EffectTreat_1.1.zip(r-4.5)EffectTreat_1.1.zip(r-4.4)EffectTreat_1.1.zip(r-4.3)
EffectTreat_1.1.tgz(r-4.4-any)EffectTreat_1.1.tgz(r-4.3-any)
EffectTreat_1.1.tar.gz(r-4.5-noble)EffectTreat_1.1.tar.gz(r-4.4-noble)
EffectTreat_1.1.tgz(r-4.4-emscripten)EffectTreat_1.1.tgz(r-4.3-emscripten)
EffectTreat.pdf |EffectTreat.html✨
EffectTreat/json (API)
NEWS
# Install 'EffectTreat' in R: |
install.packages('EffectTreat', repos = c('https://wimvde001.r-universe.dev', 'https://cloud.r-project.org')) |
- Example.Data - An example dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:ac8776121d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:CausalPCA.ContContGoodPretreatContContMin.Max.Multivar.PCAMin.R2.deltaMultivar.PCA.ContContPCA.ContContplot.GoodPretreatContContplot.Min.R2.deltaplot.Multivar.PCA.ContContplot.PCA.ContContplot.Predict.Treat.ContContplot.Predict.Treat.Multivar.ContContplot.Predict.Treat.T0T1.ContContPredict.Treat.ContContPredict.Treat.Multivar.ContContPredict.Treat.T0T1.ContContsummary.GoodPretreatContContsummary.Min.R2.deltasummary.Multivar.PCA.ContContsummary.PCA.ContContsummary.Predict.Treat.ContContsummary.Predict.Treat.Multivar.ContContsummary.Predict.Treat.T0T1.ContCont
Dependencies: