Package: NormData (via r-universe)

September 13, 2024

Type Package

Title Derivation of Regression-Based Normative Data

Version 1.1

Description Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.

Depends $R (= 3.5.0)$

Imports car, doBy, MASS, lmtest, dplyr, sandwich, openxlsx, methods

License GPL $(>= 2)$

NeedsCompilation no

Author Wim Van der Elst [aut, cre] (<<https://orcid.org/0000-0003-4315-7406>>)

Maintainer Wim Van der Elst <Wim. vanderelst@gmail.com>

Date/Publication 2024-04-12 14:30:02 UTC

Repository https://wimvde001.r-universe.dev

RemoteUrl https://github.com/cran/NormData

RemoteRef HEAD

RemoteSha 740243e4e95b079b59eb23d19f1dad5d556642b3

Contents

Bootstrap.Stage.2.NormScore

Bootstraps a confidence interval for a percentile rank

Description

The function Stage.2.NormScore() can be used to convert a raw test score of a tested person Y_0 into a percentile rank $\hat{\pi}_0$ (taking into account specified values of the independent variables). The function Bootstrap.Stage.2.NormScore() can be used to obtain a confidence interval (CI) around the point estimate of the percentile rank $\hat{\pi}_0$. A non-parametric bootstrap is used to compute a confidence interval (CI) around the estimated percentile rank (for details, see Chapter 8 in Van der Elst, 2023).

Usage

```
Bootstrap.Stage.2.NormScore(Stage.2.NormScore,
CI=.99, Number.Bootstraps=2000, Seed=123,
Rounded=FALSE, Show.Fitted.Boot=FALSE, verbose=TRUE)
```
Arguments

Details

For details, see Chapter 8 in Van der Elst (2023).

Value

An object of class Stage.2.NormScore with components,

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormScore](#page-51-1)

```
# Time-intensive part
# Replicate the bootstrap results that were obtained in
# Case study 1 of Chapter 8 in Van der Elst (2023)
# -----------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
  Model=Science.Exam~Gender)
# Stage 2: Convert a science exam score = 30 obtained by a
# female into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(Stage.1.Model=Model.1.GCSE,
  Score=list(Science.Exam=30, Gender="F"), Rounded = FALSE)
summary(Normed_Score)
# Derive the 99pc CI around the point estimate
# using a bootstrap procedure
Bootstrap_Normed_Score <- Bootstrap.Stage.2.NormScore(
  Stage.2.NormScore=Normed_Score)
summary(Bootstrap_Normed_Score)
plot(Bootstrap_Normed_Score)
# Replicate the bootstrap results that were obtained in
# Case study 2 of Chapter 8 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
  Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
summary(Substitution.Model.9)
```

```
# Convert an LDST score = 40 obtained by a
# 20-year-old test participant with LE=Low
# into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(
   Stage.1.Model=Substitution.Model.9,
   Score=list(LDST=40, Age.C=20-50, LE = "Low"),
   Rounded = FALSE)
# Derive the 99pc CI around the point estimate
# using a bootstrap
Bootstrap_Normed_Score <- Bootstrap.Stage.2.NormScore(
   Stage.2.NormScore = Normed_Score)
summary(Bootstrap_Normed_Score)
plot(Bootstrap_Normed_Score)
```
Bootstrap.Stage.2.NormTable

Bootstraps confidence intervals for a normative table

Description

The function Stage.2.NormTable() is used to derive a normative table that shows the percentile ranks $\hat{\pi}_0$ that correspond to a wide range of raw test scores Y_0 (stratified by the relevant independent variables). The function Bootstrap.Stage.2.NormTable() can be used to obtain confidence intervals (CIs) around the point estimates of the percentile ranks $\hat{\pi}_0$ in the normative table. A nonparametric bootstrap is used to compute these CIs (for details, see Chapter 8 in Van der Elst, 2023).

Usage

```
Bootstrap.Stage.2.NormTable(Stage.2.NormTable,
CI=.99, Number.Bootstraps=2000, Seed=123,
Rounded=FALSE, Show.Fitted.Boot=FALSE, verbose=TRUE)
```
Arguments

Details

For details, see Chapter 8 in Van der Elst (2023).

Value

An object of class Stage.2.NormTable with components,

NormTable.With.CI

The normative table with the bootstrapped CI.

CI The CI used.

Assume.Homoscedasticity

Logical. Was homoscedasticity assumed in the normative conversion? For details, see [Stage.2.NormTable](#page-53-1).

Assume.Normality

Logical. Was normality assumed in the in the normative conversion? For details, see [Stage.2.NormTable](#page-53-1).

NormTable.With.CI.Min

A table with the lower bounds of the CIs.

NormTable.With.CI.Max

A table with the upper bounds of the CIs.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormTable](#page-53-1)

Examples

Time-intensive part # Replicate the bootstrap results that were obtained in # Case study 1 of Chapter 8 in Van der Elst (2023) # -- library(NormData) # load the NormData package data(GCSE) # load the GCSE dataset # Fit the Stage 1 model Model.1.GCSE <- Stage.1(Dataset=GCSE, Model=Science.Exam~Gender) # Normative table with CIs NormTable.GCSE <- Stage.2.NormTable(Stage.1.Model=Model.1.GCSE,

Check.Assum 7

```
Test.Scores=seq(from=10, to=85, by=5),
 Grid.Norm.Table=data.frame(Gender=c("F", "M")),
 Rounded = FALSE)
summary(NormTable.GCSE)
# Bootstrap the CIs
Bootstrap_NormTable.GCSE <- Bootstrap.Stage.2.NormTable(
 Stage.2.NormTable = NormTable.GCSE)
summary(Bootstrap_NormTable.GCSE)
# Replicate the bootstrap results that were obtained in
# Case study 2 of Chapter 8 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
 Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
summary(Substitution.Model.9)
# Make the normative table
NormTable.LDST <- Stage.2.NormTable(
Stage.1.Model=Substitution.Model.9,
 Test.Scores=seq(from=25, to=40, by=5),
 Grid.Norm.Table=expand.grid(
 Age.C=seq(from=-30, to=30, by = 1),
 LE=c("Low", "Average", "High")), Rounded = FALSE)
# Bootstrap the CIs
Bootstrap_NormTable.LDST <- Bootstrap.Stage.2.NormTable(
 Stage.2.NormTable = NormTable.LDST)
summary(Bootstrap_NormTable.LDST)
```
Check.Assum *Check assumptions for a fitted Stage 1 model*

Description

Helper function to check the validity of the homoscedasticity and normality assumptions for a fitted Stage 1 model

Usage

```
Check.Assum(Stage.1.Model)
```
Arguments

Stage.1.Model The fitted Stage.1 model.

Details

For details, see Van der Elst (2023).

Value

An object of class Check.Assum with component,

Assume.Homo.S2 Is the homoscedasticity assumption valid?

Assume.Normality.S2

Is the normality assumption valid?

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.1](#page-43-1)

```
data("Substitution")
# Fit a model with a linear mean prediction function
Fit <- Stage.1(Dataset = Substitution, Model = LDST~Age)
Check.Assum(Fit)
   # Output shows that the homoscedasticity and normality
   # assumptions are both violated
```


Description

The function CheckFit() allows for evaluating the fit of the mean structure of a regression model by comparing sample means and model-predicted means. If the model fits the data well, there should be a good agreement between the sample means and the predicted mean test scores in the relevant subgroups. When the model only contains (binary and/or non-binary) qualitative independent variables, the subgroups correspond to all possible combinations of the different levels of the qualitative variables. When there are quantitative independent variables in the model, these have to be discretized first.

Usage

```
CheckFit(Stage.1.Model, Means, CI=.99, Digits=6)
```
Arguments

Details

For details, see Van der Elst (2023).

Value

An object of class CheckFit with component,

Results.Observed A table with the means, SDs, and N for the observed test score, for each combination of independent variable levels. Results.Predicted A table with the mean predicted test scores, for each combination of independent variable levels. Miss The number of missing observations in the dataset. Dataset The dataset used in the analysis. Model The specified model for the mean. CI The requested CI around the mean.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.1](#page-43-1), [plot.CheckFit](#page-24-1)

```
# Replicate the fit plot that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
head(Substitution) # have a look at the first datalines in
# the Substitution dataset
# Final Stage 1 model
Substitution$Age.C <- Substitution$Age - 50
 # Add Age_Group (that discretizes the quantitative variable Age
 # into 6 groups with a span of 10 years in the dataset for use
 # by the CheckFit() function later on)
Substitution$Age_Group <- cut(Substitution$Age,
  breaks=seq(from=20, to=80, by=10))
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
  Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Examine fit
Fit.LDST <- CheckFit(Stage.1.Model=Substitution.Model.9,
 Means=LDST~Age_Group+LE)
summary(Fit.LDST)
plot(Fit.LDST)
# Replicate the fit plot that was obtained in
# Case study 2 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(VLT) # load the VLT dataset
head(VLT) # have a look at the first datalines in
                   # the VLT dataset
```
Coding the contract of the con

```
# Fit the final Stage 1 model
VLT$Age.C <- VLT$Age - 50
VLT$Age.C2 <- (VLT$Age - 50)**2
  # Add Age_Group (that discretizes the quantitative variable Age
  # into 6 groups with a span of 10 years in the dataset for use
  # by the CheckFit() function later on)
VLT$Age_Group <- cut(VLT$Age, breaks=seq(from=20, to=80, by=10))
VLT.Model.4 <- Stage.1(Dataset = VLT, Alpha = .005,
  Model = Total.Recall ~ Age.C+Age.C2+Gender+LE+Age.C:Gender)
# Examine fit using fit plots for the Age Group by
# LE by Gender subgroups
Fit.Means.Total.Recall <- CheckFit(Stage.1.Model=VLT.Model.4,
  Means=Total.Recall~Age_Group+LE+Gender)
summary(Fit.Means.Total.Recall)
plot(Fit.Means.Total.Recall)
```
Coding *Check the coding of a variable*

Description

This function checks the coding of a variable, e.g., the dummy-coding scheme that will be used for binary or qualitative variables.

Usage

Coding(x, verbose=TRUE)

Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Examples

```
data(Substitution)
Coding(Substitution$LE)
```
Densities *Plot densities*

Description

Plot densities for an outcome for different subgroups.

Usage

```
Densities(Dataset, Test.Score, IV, Color=TRUE,
Size.Legend=1, xlab="Test score", main, ...)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

ExploreData 13

Examples

```
# Plot Gender-specific densities of the raw science exam
# scores in the GCSE dataset
data(GCSE)
Densities(Dataset = GCSE, Test.Score = Science.Exam, IV=Gender)
# Plot LE-specific densities of the residuals of a model
# where the Openness scale score is regressed on LE
data(Personality)
Fit <- Stage.1(Dataset = Personality, Model = Openness~LE)
summary(Fit)
Data.With.Residuals <- data.frame(Personality,
  Fit$HomoNorm$Residuals)
Densities(Dataset = Data.With.Residuals,
  Test.Score = Fit.HomoNorm.Residuals, IV = LE)
```
ExploreData *Explore data*

Description

This function provides summary statistics of a test score (i.e., the mean, SD, N, standard error of the mean, and CI of the mean), stratified by the independent variable(s) of interest. The independent variables should be factors (i.e., binary or non-binary qualitiative variables).

Usage

ExploreData(Dataset, Model, CI=.99, Digits=6)

Arguments

Details

For details, see Van der Elst (2023).

Value

An object of class ExploreData with component,

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

```
# Replicate the exploratory analyses that were conducted
# in Case study 1 of Chapter 5 in Van der Elst (2023)
# ------------------------------------------------------
library(NormData) # load the NormData package
data(Personality) # load the Personality dataset
Explore_Openness <- ExploreData(Dataset=Personality,
  Model=Openness~LE)
summary(Explore_Openness)
plot(Explore_Openness,
  main="Mean Openness scale scores and 99pc CIs")
# Replicate the exploratory analyses that were conducted
# in Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
head(Substitution) # have a look at the first datalines in
                    # the Substitution dataset
# First make a new variable Age_Group, that discretizes the
# quantitative variable Age into 6 groups with a span of 10 years
Substitution$Age_Group <- cut(Substitution$Age,
   breaks=seq(from=20, to=80, by=10))
# Compute descriptives of the LDST score for different Age Group
# by LE combinations
```
Explore.LDST.Age.LE <- ExploreData(Dataset=Substitution,

Fluency and the state of th

```
Model=LDST~Age_Group+LE)
summary(Explore.LDST.Age.LE)
# Make a plot of the results.
plot(Explore.LDST.Age.LE,
  main="Mean (99pc CI) LDST scores by Age group and LE")
# Compute descriptives of the LDST score for different
# Age Group by Gender combinations
Explore.LDST.Age.Gender <- ExploreData(Dataset=Substitution,
 Model=LDST~Age_Group+Gender)
# Plot the results
plot(Explore.LDST.Age.Gender,
 main="Mean (99pc CI) LDST scores by Age group and Gender")
# Compute descriptives of the LDST score for different
# LE by Gender combinations
Explore.LDST.LE.Gender <-
 ExploreData(Dataset=Substitution, Model=LDST~LE+Gender)
# Plot the results
plot(Explore.LDST.LE.Gender,
 main="Mean (99pc CI) LDST scores by LE and Gender")
# Compute summary statistics of the LDST score in the
# Age Group by LE by Gender combinations
Explore.LDST <- ExploreData(Dataset=Substitution,
  Model=LDST~Age_Group+LE+Gender)
# Plot the results
plot(Explore.LDST)
```
Fluency *Verbal fluency data*

Description

This dataset contains the scores of the Fruits Verbal Fluency Test. The $N = 1241$ test participants were instructed to generate as many words as possible that belong to the category 'fruits' (e.g., apple, orange, banana, etc.) within 60 seconds. These are simulated data based on the results described in Rivera *et al.* (2019).

Usage

data(Fluency)

Format

A data.frame with 1241 observations on 3 variables.

Id The Id number of the test participant.

Country The country where the test participant lives, coded as a factor.

Fruits The number of correctly generated fruit names. Higher score is better.

References

Rivera *et al.* (2019). Normative Data For Verbal Fluency in Healthy Latin American Adults: Letter M, and Fruits and Occupations Categories. *Neuropsychology, 33,* 287-300.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Fract.Poly *Fit fractional polynomials*

Description

Fit a fractional polynomial model with m terms of the form X^p , where the exponents p are selected from a small predefined set S of both integer and non-integer values. This function can be useful to model the mean or variance prediction function in a more flexible way than by using linear, quadratic or cubic polynomials.

Usage

Fract.Poly(IV, Outcome, $S=c(-3, -2.5, -2.0, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3),$ Max.M=3)

Arguments

Value

 $GCSE$ 17

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Examples

```
data(VLT)
# Fit fractional polynomials of orders 1 to 2
FP <- Fract.Poly(IV = VLT$Age, Outcome = VLT$Total.Recall,
 Max.M=2)
FP$Lowest.AIC
FP$Best.Model
# Model with lowest AIC: 127.689 + (-190.731 * (Age**(-0.5))) +
# (-7.586 * (Age**(0.5)))
# Make plot
plot(x=VLT$Age, y=VLT$Total.Recall, col="grey")
 # add best fitted fractional polynomial
Age.Vals.Plot <- 20:80
Pred.Vals <- 127.689 + (-190.731 * (Age.Vals.Plot**(-0.5))) +
   (-7.586 * (Age.Vals.Plot**(0.5)))
lines(x=Age.Vals.Plot, y=Pred.Vals, lwd=2, col="red", lty=2)
legend("topright", lwd=2, col="red", lty=2,
 legend="Mean Prediction Function, Fractional Polynomial")
```
GCSE *GCSE exam score*

Description

Thiis dataset contains the scores on a written science exam (General Certificate of Secondary Education; GCSE) that is taken by $N = 1905$ students in 73 schools in England. The exam is taken at the end of compulsory schooling, when students are typically 16 years old. The actual score maximum is 160, but here a rescaled score (with max value 100) is provided. The data originally come from the package mlmRev, dataset Gcsemv.

Usage

data(GCSE)

Format

A data.frame with 1905 observations on 3 variables.

Id The Id number of the student.

Gender The gender of the student, coded as $M =$ male and $F =$ female.

Science.Exam The science exam score.

GLT *Conduct the General Linear Test (GLT) procedure*

Description

The function GLT fits two nested linear regression models (that are referred to as the unrestricted and the restricted models), and evaluates whether or not the fit of both models differs significantly.

Usage

```
GLT(Dataset, Unrestricted.Model, Restricted.Model, Alpha=0.05,
Alpha.Homosc=0.05, Assume.Homoscedasticity=NULL)
```
Arguments

Details

For details, see Van der Elst (2023).

Value

An object of class GLT with components,

F.Test.Stat.Results

The result of the GLT procedure, i.e., the SSEs and DFs the fitted unrestricted and restricted models, and the F^* test-statistic.

Fit.Unrestricted.Model

The fitted unrestricted model.

Fit.Restricted.Model

The fitted restricted model.

Alpha The significance level that was used.

p.val.homoscedasticity

The p-value that was used in the homoscedasticity test for the unrestricted model.

F.Test.Hetero.Robust

The result of the heteroscedasticity-robust F* test. For details, see the waldtest function of the lmtest package (see ?waldtest).

Alpha.Homoscedasticity

The significance level that was used to conduct the homoscedasticity test. Default Alpha.Homoscedasticity=0.05.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Examples

```
# Replicate the GLT results that were obtained in
# Case study 1 of Chapter 5 in Van der Elst (2023)
# ------------------------------------------------
data(Personality)
GLT.Openness <- GLT(Dataset=Personality,
     Unrestricted.Model=Openness~LE, Restricted.Model=Openness~1)
summary(GLT.Openness)
# Replicate the GLT results that were obtained in
```
Case study 2 of Chapter 5 in Van der Elst (2023) # --- data(Fluency)

```
GLT.Fruits <- GLT(Dataset=Fluency,
    Unrestricted.Model=Fruits~LE, Restricted.Model=Fruits~1)
summary(GLT.Fruits)
```
ICC *Intra class correlation*

Description

The function ICC computes the intra class correlation. The ICC corresponds to the proportion of the total variance in the residuals that is accounted for by the clustering variable at hand (Kutner *et al.*, 2005).

Usage

```
ICC(Cluster, Test.Score, Dataset, CI = 0.95)
```
Arguments

Details

This function is a modification of the ICCest function from the ICC package (v2.3.0), with minimal changes. For details of the original function, see https://cran.r-project.org/web/packages/ICC/ICC.pdf. The author of the original function is Matthew Wolak.

Value

An object of class ICC with component,

Levels 21

Author(s)

Original function: Matthew Wolak (with some small modifications by Wim Van der Elst)

References

https://cran.r-project.org/web/packages/ICC/ICC.pdf

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). *Applied linear statistical models* (5th edition). New York: McGraw Hill.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[plot.ICC](#page-29-1)

Examples

```
# Compute ICC in Substitution dataset, using Test.Administrator as
# clustering unit
data(Substitution)
# Add administrator to the dataset (just randomly allocate labels
# as Test.Administrator, so ICC should be approx. 0)
Substitution$Test.Adminstrator <- NA
Substitution$Test.Adminstrator <- sample(LETTERS[1:10],
```

```
replace = TRUE, size = length(Substitution$Test.Adminstrator))
```

```
Substitution$Test.Adminstrator <-
```

```
as.factor(Substitution$Test.Adminstrator)
```
ICC_LDST <- ICC(Cluster = Test.Adminstrator, Test.Score = LDST, Data = Substitution)

```
# Explore results
summary(ICC_LDST)
plot(ICC_LDST)
```
Levels *Explore data*

Description

Gives the levels of a variable.

Usage

Levels(x)

Arguments

x A variable for which the different levels should be printed.

Details

For details, see Van der Elst (2023).

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Examples

```
data(Substitution)
Levels(Substitution$Gender)
```
Personality *Data of the Openness scale of a personality test*

Description

These are the data of the Openness subscale of International Personality Item Pool (ipip.ori.org). This subscale consists of 5 items: $1 = I$ *am full of ideas*, $2 = I$ *avoid difficult reading material*, $3 =$ *I carry the conversation to a higher level*, 4 = *I spend time reflecting on things*, and 5 = *I will not probe deeply into a subject*. Each item is scored on a 6-point response scale with answer categories $1 =$ very inaccurate, $2 =$ moderately inaccurate, $3 =$ slightly inaccurate, $4 =$ slightly accurate, $5 =$ moderately accurate, and $6 =$ very accurate. The Openness scale score corresponds to the sum of the individual item scores, with items 2 and 5 being reverse scored. The raw Openness scale score ranges between 5 and 30. A higher score is indicative of higher levels of curiosity, intellectualism, imagination, and aesthetic interests (McCrae, 1994).

The data were collected as part of the Synthetic Apeture Personality Assessment (SAPA http://sapaproject.org) web-based personality assessment project.

Usage

data(Personality)

Format

A data.frame with 2137 observations on 3 variables.

- Id The Id number of the participant.
- LE The Level of Education (LE) of the participant, coded as $1 =$ less than high school, $2 =$ finished high school, $3 =$ some college but did not graduate, $4 =$ college graduate, and $5 =$ graduate degree.

Openness Level of Openness.

References

McCrae, R. R. (1994). Openness to Experience: expanding the boundaries of factor V. *European Journal of Personality, 8,* 251-272.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

plot Bootstrap.Stage.2.NormScore *Plot the bootstrap distribution and the percentile bootstrap CI*

Description

This function plots the bootstrap distribution and the percentile bootstrap CI for a test score based on a Bootstrap.Stage.2.NormScore object. A non-parametric bootstrap is used to compute a confidence interval (CI) around the estimated percentile rank (for details, see Chapter 8 in Van der Elst, 2023).

Usage

```
## S3 method for class 'Bootstrap.Stage.2.NormScore'
plot(x,
cex.axis=1, cex.main=1, cex.lab=1, ...)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Bootstrap.Stage.2.NormScore](#page-1-1)

```
# Time-intensive part
# Replicate the bootstrap results that were obtained in
# Case study 1 of Chapter 8 in Van der Elst (2023)
# -----------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
  Model=Science.Exam~Gender)
# Stage 2: Convert a science exam score = 30 obtained by a
# female into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(Stage.1.Model=Model.1.GCSE,
  Score=list(Science.Exam=30, Gender="F"), Rounded = FALSE)
summary(Normed_Score)
# Derive the 99pc CI around the point estimate
# using a bootstrap procedure
Bootstrap_Normed_Score <- Bootstrap.Stage.2.NormScore(
  Stage.2.NormScore=Normed_Score)
summary(Bootstrap_Normed_Score)
plot(Bootstrap_Normed_Score)
# Replicate the bootstrap results that were obtained in
# Case study 2 of Chapter 8 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
```
plot CheckFit 25

```
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
 Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
summary(Substitution.Model.9)
# Convert an LDST score = 40 obtained by a
# 20-year-old test participant with LE=Low
# into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(
   Stage.1.Model=Substitution.Model.9,
   Score=list(LDST=40, Age.C=20-50, LE = "Low"),
  Rounded = FALSE)
# Derive the 99pc CI around the point estimate
# using a bootstrap
Bootstrap_Normed_Score <- Bootstrap.Stage.2.NormScore(
   Stage.2.NormScore = Normed_Score)
summary(Bootstrap_Normed_Score)
plot(Bootstrap_Normed_Score)
```
plot CheckFit *Evaluate the fit of the mean structure of a fitted Stage 1 model.*

Description

The function CheckFit() allows for evaluating the fit of the mean structure of a regression model by comparing sample means and model-predicted means. This function plots the sample means (with CIs) and the means of the model-predicted values. If the model fits the data well, there should be a good agreement between the sample means and the predicted mean test scores in the relevant subgroups. When the model only contains (binary and/or non-binary) qualitative independent variables, the subgroups correspond to all possible combinations of the different levels of the qualitative variables. When there are quantitative independent variables in the model, these have to be discretized first.

Usage

```
## S3 method for class 'CheckFit'
plot(x, Color, pch, lty,
Width.CI.Lines=.125, Size.symbol = 1,
No.Overlap.X.Axis=TRUE, xlab, ylab="Test score",
main = " ", Legend.text.size=1, Connect.Means,
cex.axis=1, cex.main=1.5, cex.lab=1.5, ...)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.1](#page-43-1), [plot.CheckFit](#page-24-1)

plot CheckFit 27

```
# Replicate the fit plot that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
head(Substitution) # have a look at the first datalines in
# the Substitution dataset
# Final Stage 1 model
Substitution$Age.C <- Substitution$Age - 50
  # Add Age_Group (that discretizes the quantitative variable Age
  # into 6 groups with a span of 10 years in the dataset for use
  # by the CheckFit() function later on)
Substitution$Age_Group <- cut(Substitution$Age,
   breaks=seq(from=20, to=80, by=10))
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Examine fit
Fit.LDST <- CheckFit(Stage.1.Model=Substitution.Model.9,
  Means=LDST~Age_Group+LE)
summary(Fit.LDST)
plot(Fit.LDST)
# Replicate the fit plot that was obtained in
# Case study 2 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(VLT) # load the VLT dataset
head(VLT) # have a look at the first datalines in
                   # the VLT dataset
# Fit the final Stage 1 model
VLT$Age.C <- VLT$Age - 50
VLT$Age.C2 <- (VLT$Age - 50)**2
  # Add Age_Group (that discretizes the quantitative variable Age
  # into 6 groups with a span of 10 years in the dataset for use
  # by the CheckFit() function later on)
VLT$Age_Group <- cut(VLT$Age, breaks=seq(from=20, to=80, by=10))
VLT.Model.4 <- Stage.1(Dataset = VLT, Alpha = .005,
  Model = Total.Recall ~ Age.C+Age.C2+Gender+LE+Age.C:Gender)
# Examine fit using fit plots for the Age Group by
# LE by Gender subgroups
Fit.Means.Total.Recall <- CheckFit(Stage.1.Model=VLT.Model.4,
  Means=Total.Recall~Age_Group+LE+Gender)
summary(Fit.Means.Total.Recall)
plot(Fit.Means.Total.Recall)
```
plot ExploreData *Plot means and CIs for test scores.*

Description

Plot the means (and CIs) for the test scores, stratified by the independent variable(s) of interest. The independent variables should be factors (i.e., binary or non-binary qualitiative variables).

Usage

```
## S3 method for class 'ExploreData'
plot(x, Width.CI.Lines=.125, Size.symbol = 1,
No.Overlap.X.Axis=TRUE, xlab, ylab="Test score", main,
Color, pch, lty, Black.white=FALSE, Legend.text.size=1,
Connect.Means = TRUE, Error.Bars = "CI",
cex.axis=1, cex.main=1, cex.lab=1, ...)
```
Arguments

plot ExploreData 29

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[ExploreData](#page-12-1)

Examples

Replicate the exploratory analyses that were conducted # in Case study 1 of Chapter 5 in Van der Elst (2023) # --- library(NormData) # load the NormData package data(Personality) # load the Personality dataset Explore_Openness <- ExploreData(Dataset=Personality, Model=Openness~LE) summary(Explore_Openness) plot(Explore_Openness, main="Mean Openness scale scores and 99pc CIs") # Replicate the exploratory analyses that were conducted # in Case study 1 of Chapter 7 in Van der Elst (2023) # --- library(NormData) # load the NormData package

```
data(Substitution) # load the Substitution dataset
head(Substitution) # have a look at the first datalines in
                    # the Substitution dataset
# First make a new variable Age_Group, that discretizes the
# quantitative variable Age into 6 groups with a span of 10 years
Substitution$Age_Group <- cut(Substitution$Age,
  breaks=seq(from=20, to=80, by=10))
# Compute descriptives of the LDST score for different Age Group
# by LE combinations
Explore.LDST.Age.LE <- ExploreData(Dataset=Substitution,
   Model=LDST~Age_Group+LE)
summary(Explore.LDST.Age.LE)
# Make a plot of the results.
plot(Explore.LDST.Age.LE,
  main="Mean (99pc CI) LDST scores by Age group and LE")
# Compute descriptives of the LDST score for different
# Age Group by Gender combinations
Explore.LDST.Age.Gender <- ExploreData(Dataset=Substitution,
 Model=LDST~Age_Group+Gender)
# Plot the results
plot(Explore.LDST.Age.Gender,
 main="Mean (99pc CI) LDST scores by Age group and Gender")
# Compute descriptives of the LDST score for different
# LE by Gender combinations
Explore.LDST.LE.Gender <-
 ExploreData(Dataset=Substitution, Model=LDST~LE+Gender)
# Plot the results
plot(Explore.LDST.LE.Gender,
 main="Mean (99pc CI) LDST scores by LE and Gender")
# Compute summary statistics of the LDST score in the
# Age Group by LE by Gender combinations
Explore.LDST <- ExploreData(Dataset=Substitution,
  Model=LDST~Age_Group+LE+Gender)
# Plot the results
plot(Explore.LDST)
```


plot ICC *Graphical depiction of the ICC.*

plot ICC $\qquad \qquad 31$

Description

The ICC corresponds to the proportion of the total variance in the residuals that is accounted for by the clustering variable at hand (Kutner *et al.*, 2005). This function visualizes the extent ot which there is clustering in the dataset.

Usage

```
## S3 method for class 'ICC'
plot(x, X.Lab="Cluster", Y.Lab="Test score",
Main="", Add.Jitter=0.2, Size.Points=1, Size.Labels=1,
Add.Mean.Per.Cluster=TRUE, Col.Mean.Symbol="red", Seed=123,
...)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). *Applied linear statistical models* (5th edition). New York: McGraw Hill.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[ICC](#page-19-1)

Examples

```
# Compute ICC in Substitution dataset, using Test.Administrator as
# clustering unit
data(Substitution)
# Add administrator to the dataset (just randomly allocate labels
# as Test.Administrator, so ICC should be approx. 0)
Substitution$Test.Adminstrator <- NA
Substitution$Test.Adminstrator <- sample(LETTERS[1:10],
 replace = TRUE, size = length(Substitution$Test.Adminstrator))
Substitution$Test.Adminstrator <-
 as.factor(Substitution$Test.Adminstrator)
ICC_LDST <- ICC(Cluster = Test.Adminstrator, Test.Score = LDST, Data = Substitution)
# Explore results
summary(ICC_LDST)
plot(ICC_LDST)
# Make points in the plot a bit larger and reduce
# the size of labels on the X-axis (initials test administrators)
plot(ICC_LDST, Size.Labels = .5, Size.Points=.5)
```
plot Stage.1 *Check the model assumptions for a fitted Stage 1 model graphically.*

Description

This function provides several plots that are useful to evaluate model assumptions. When the plot() function is applied to a fitted Stage.1 object, three panels are generated. These panels show plots that can be used (i) to evaluate the homoscedasticity assumption, (ii) to evaluate the normality assumption, and (iii) to evaluate the presence of outliers.

plot Stage. 1 33

Usage

```
## S3 method for class 'Stage.1'
plot(x, Homoscedasticity=TRUE, Normality=TRUE,
Outliers=TRUE, Assume.Homoscedasticity, Add.Jitter=0, Seed=123,
Confidence.QQ.Normality=.99, Plots.Together=TRUE,
Y.Lim.ResVarFunction, Group.Spec.Densities.Delta=FALSE, Main.Homosced.1,
Main.Homosced.2, Main.Norm.1, Main.Norm.2, Main.Norm.3, Main.Outliers,
cex.axis.homo=1, cex.main.homo=1, cex.lab.homo=1,
cex.axis.norm=1.6, cex.main.norm=1.5, cex.lab.norm=1.5,
cex.axis.outl=1, cex.main.outl=1, cex.lab.outl=1,
Color="red", Loess.Span=0.75, verbose=TRUE, ...)
```
Arguments

x A fitted object of class Stage.1.

```
Homoscedasticity
```
Logical. Should plots to evaluate homoscedasticity be shown? Default Homoscedasticity=TRUE.

- Normality Logical. Should plots to evaluate the normality assumption be shown? The normality plots are based on the standardized residuals in the normative dataset, which are computed as explained in the Assume. Homoscedasticity= argument documentation below. Default Normality=TRUE.
- Outliers Logical. Should plots to evaluate outliers be shown? The outlier plot is based on the standardized residuals in the normative dataset, which are computed as explained in the Assume.Homoscedasticity= argument documentation below. Default Outliers=TRUE.

Assume.Homoscedasticity

By default, the standardized residuals δ_i that are shown in the normality and outlier plots are computed based on the overall residual standard error when the homoscedasticity assumption is valid (i.e., as $\hat{\delta}_i = \frac{\hat{\epsilon}_i}{\hat{\sigma}^2}$, with $\hat{\sigma}_i^2$ corresponding to the sumplementary dependent contract on the sumplementary dependent contract of the sumplementary dependent contr nonioseculas terms assumption is valid (i.e., as $\sigma_i = \frac{1}{\sigma_i^2}$, with σ_{ε} corresponding to the overall residual standard error), or based on prediction-specific residual standard dard errors when the homoscedasticity assumption is invalid (i.e., as $\hat{\delta}_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}^2_{\hat{\varepsilon}_i}}$, with $\hat{\sigma}_{\varepsilon_i}^2$ corresponding to e.g., a cubic polynomial variance prediction function $\hat{\sigma}_{\epsilon_i}^2 = \hat{\gamma}_0 + \hat{\gamma}_1 \hat{Y} + \hat{\gamma}_2 \hat{Y}^2 + \gamma_3 \hat{Y}^3$ when the mean structure of the model con-
tains quantitiative independent variables). The default behaviour of the plat () tains quantitiative independent variables). The default behaviour of the plot() function can be overruled using the Assume.Homoscedasticity argument. For

example, when adding the argument Assume.Homoscedasticity=TRUE to the function call, the standardized residuals that are plotted will be computed based on the overall residual standard error (irrespective of the result of the Levene or Breusch-Pagan test).

Add.Jitter The amount of jitter (random noise) that should be added to the X-axis of the homoscedasticity plots (which show the model-predicted mean values). Adding a bit of jitter is useful to show the data more clearly (especially when there are only a few unique predicted values, e.g., when a binary or non-binary qualitative independent variable is considered in the mean structure of the model), i.e., to avoid overlapping data points. The specified value Add.Jitter= in the function call determines the amount of jitter (range of values) that is added. For example, when Add.Jitter=0.1, a random value between -0.1 and 0.1 (sampled from a uniform) is added to the predicted values in the homoscedasticity plots (shown on the X-axis). Default Add.Jitter=0, i.e., no jitter added to the predicted values in the homoscedasticity plots.

Seed The seed that is used when adding jitter. Default Seed=123.

Confidence.QQ.Normality

Specifies the desired confidence-level for the confidence band arond the line of perfect agreement/normality in the QQ-plot that is used to evaluate normality. Default Confidence.QQ.Normality=0.95. Use Confidence.QQ.Normality= FALSE if no confidence band is needed.

Plots.Together The different homoscedasticity and normality plots are grouped together in a panel by default. For example, the three normality plots are shown together in one panel. If it is preferred to have the different plots in separate panels (rather than grouped to- gether), the argument Plots.Together=FALSE can be used. Default Plots.Together=TRUE.

Y.Lim.ResVarFunction

The min, max limits of the Y-axis that should be used for the variance function plot. By default, the limit of the Y-axis is set between 0 and the maximum value of estimated variances multiplied by 2. This can be changed using the Y.Lim.ResVarFunction argument. For example, adding the argument Y.Lim.ResVarFunction=c(0, 500) sets the range of the Y-axis of the variance function plot from 0 to 500.

Group.Spec.Densities.Delta

Logical. Should a plot with the group-specific densities of the standardized residuals be shown? Default Group.Spec.Densities.Delta=FALSE.

Main.Homosced.1

The title of the first panel of the homoscedasticity plot (i.e., the scatterplot of the residuals against the predicted scores).

Main.Homosced.2

The title of second panel of the homoscedasticity plot (i.e., the variance function plot).

- Main.Norm.1 The title of the first panel of the normality plot (i.e., the histogram of the standardized residuals).
- Main.Norm.2 The title of the second panel of the normality plot (i.e., the density of the standardized residuals and standard normal distribution).
- Main.Norm.3 The title of the third panel of the normality plot (i.e., the QQ-plot).
- Main.Outliers The title of the outlier plot.
- cex.axis.homo The magnification to be used for axis annotation of the homoscedasticity plots.
- cex.main.homo The magnification to be used for the main label of the homoscedasticity plots.
- cex.lab.homo The magnification to be used for the X- and Y-axis labels of the homoscedasticity plots.
- cex.axis.norm The magnification to be used for axis annotation of the normality plots.
- cex.main.norm The magnification to be used for the main label of the normality plots.

plot Stage. 1 35

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

```
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 4 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Conduct the Stage 1 analysis
Model.1.GCSE <- Stage.1(Dataset=GCSE,
 Model=Science.Exam~Gender)
summary(Model.1.GCSE)
plot(Model.1.GCSE, Add.Jitter = .2)
# Use blue color for EVF and density normal distribution
plot(Model.1.GCSE, Add.Jitter = .2, Color="blue")
# Change the title of the variance function plot into
# "Variance function plot, residuals Science exam"
plot(Model.1.GCSE, Add.Jitter = .2,
 Main.Homosced.2 = "Variance function plot, residuals Science exam")
```

```
# Use a 95 percent CI around the line of perfect agreement in the
# QQ plot of normality
plot(Model.1.GCSE, Add.Jitter = .2,
     Confidence.QQ.Normality = .9)
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Add the variable Age.C (= Age centered) to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+LE,
  Order.Poly.Var=1) # Order.Poly.Var=1 specifies a linear polynomial
                     # for the variance prediction function
# Final Stage 1 model
summary(Substitution.Model.9)
plot(Substitution.Model.9)
# Request a variance function plot that assumes that
# the homoscedasticity assumption is valid
plot(Substitution.Model.9, Assume.Homoscedasticity = TRUE)
```
plot Stage.2.NormScore

Plot the results for a Stage.2.NormScore *object.*

Description

The function Stage.2.NormScore() is used to convert the raw test score of a tested person Y_0 into a percentile rank $\hat{\pi}_0$ (taking into account specified values of the independent variables). This function plots the results graphically. In particular, the density of the standard normal distribution is shown (when the normality assumption is valid for the fitted Stage 1 model), or the density of the standardized residuals in the normative sample (when the noormality assumption is not shown). The AUC between $-\infty$ and the tested person's standarized test score δ_i is shaded in grey, which visualizes the percentile rank that corresponds to the raw test score.

Usage

```
## S3 method for class 'Stage.2.NormScore'
plot(x, Main=" ", Both.CDFs=FALSE, xlim,
cex. axis=1, cex. main=1, cex. lab=1, ...)
```


Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormScore](#page-51-1)

```
# Replicate the normative conversion that was obtained in
# Case study 1 of Chapter 3 in Van der Elst (2023)
# (science exam score = 30 obtained by a female)
# -------------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
  Model=Science.Exam~Gender)
# Stage 2: Convert a science exam score = 30 obtained by a
# female into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(Stage.1.Model=Model.1.GCSE,
  Score=list(Science.Exam=30, Gender="F"))
summary(Normed_Score)
```

```
plot(Normed_Score)
```

```
# Replicate the normative conversion that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# (LDST score = 40 obtained by a 20-year-old
# test participant with LE=Low)
# -------------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
 Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
summary(Substitution.Model.9)
# Convert an LDST score = 40 obtained by a
# 20-year-old test participant with LE=Low
# into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(
   Stage.1.Model=Substitution.Model.9,
   Score=list(LDST=40, Age.C=20-50, LE = "Low"))
summary(Normed_Score)
plot(Normed_Score)
```
plot Tukey.HSD *Plot the results of Tukey's Honest Significance Difference test.*

Description

This function plots the results of Tukey's Honest Significance Difference (HSD; Tukey, 1949) test that allows for making post hoc comparisons of the group means. Tukey's HSD can only be conducted when the mean structure of the Stage 1 model only contains qualitative independent variables (i.e., when the fitted regression model is essentially an ANOVA).

Usage

```
## S3 method for class 'Tukey.HSD'
plot(x, \ldots)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Tukey, J. (1949). Comparing individual means in the Analysis of Variance. *Biometrics, 5,* 99-114.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Tukey.HSD](#page-59-1)

Examples

```
data(Personality)
Model.Openness <- Stage.1(Dataset = Personality, Model = Openness ~ LE)
# conduct post hoc comparisons for the levels of education
Tukey.Openness <- Tukey.HSD(Model.Openness)
summary(Tukey.Openness)
plot(Tukey.Openness)
# conduct post hoc comparisons for the levels of education by education combinations
data(Substitution)
Model.Substitution <- Stage.1(Dataset = Substitution, Model = LDST ~ LE*Gender)
Tukey.Substitution <- Tukey.HSD(Model.Substitution)
summary(Tukey.Substitution)
plot(Tukey.Substitution)
```
Plot.Scatterplot.Matrix *Explore data*

Description

The function Plot.Scatterplot.Matrix() makes a scatterplot matrix of the specified variables.

Usage

```
Plot.Scatterplot.Matrix(Dataset, Variables,
Add.Jitter=0.1, Seed=123, ...)
```
Arguments

Details

For details, see Van der Elst (2023).

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

```
data(Substitution)
```

```
# Make a scatterplot matrix with the variables LDST,
# Age, Gender and LE in the Substitution dataset
Plot.Scatterplot.Matrix(Dataset = Substitution,
Variables = c("LDST", "Age", "Gender", "LE"))
```
PlotFittedPoly *Explore data*

Description

The function PlotFittedPoly fits polynomials of a specified order to the data.

Usage

```
PlotFittedPoly(Dataset, Test.Score, IV, Center.Value.IV=0,
Order.Polynomial=3, Confidence.Band.Poly=FALSE, Alpha=.01,
EMF = TRUE, Confidence.Band.EMF=TRUE,
xlab, ylab, Color = "red", Black.white=FALSE,
Legend.Location="topright", Legend.text.size=1,
Add.Jitter=0, Seed=123, cex.axis=1, cex.main=1,
cex.lab=1, Loess.Span=0.75, ...)
```
Arguments

Details

For details, see Van der Elst (2023).

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

```
data(Substitution)
```

```
# plot of linear, quadratic and cubic polynomials relating age
# to the LDST test score
PlotFittedPoly(Dataset = Substitution, Test.Score = LDST, IV = Age,
Order.Polynomial = 1, Center.Value.IV = 50)
PlotFittedPoly(Dataset = Substitution, Test.Score = LDST, IV = Age,
Order.Polynomial = 2, Center.Value.IV = 50)
```
Sandwich **43**

```
PlotFittedPoly(Dataset = Substitution, Test.Score = LDST, IV = Age,
Order.Polynomial = 3, Center.Value.IV = 50)
```
Sandwich *Sandwich estimators for standard errors*

Description

The Sandwich() function can be used to obtain heteroscedasticity-consistent standard errors of the regression parameters of a fitted Stage 1 model. These are used to account for heteroscedasticity.

Usage

```
Sandwich(Stage.1.Model, Type="HC0")
```
Arguments

Value

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

White, H. (1980). A heteroscedasticity-consistent covariance matrix and a direct test for heteroscedasticity. Econometrica, 48, 817-838.

See Also

[Stage.1](#page-43-1)

Examples

```
data(GCSE)
Model.1.GCSE <- Stage.1(Dataset = GCSE, Model = Science.Exam~Gender)
Sandwich(Stage.1.Model = Model.1.GCSE)
```
Stage.1 *Stage 1 of the regression-based normative analysis*

Description

The function Stage.1 fits a regression model with the specified mean and residual variance components, and conducts several model checks (homoscedasticity, normality, absence of outliers, and multicollinearity) that are useful in a setting where regression-based normative data have to be established.

Usage

```
Stage.1(Dataset, Model, Order.Poly.Var=3,
Alpha=0.05, Alpha.Homosc=0.05, Alpha.Norm = .05,
Assume.Homoscedasticity=NULL,
Test.Assumptions=TRUE, Outlier.Cut.Off=4,
Show.VIF=TRUE, GVIF.Threshold=10, Sandwich.Type="HC0",
Alpha.CI.Group.Spec.SD.Resid=0.01)
```
Arguments

Alpha.Norm The significance level to be used to test the normality assumption for the standardized errors using the Shapiro-Wilk test. The normality assumption is evaluated based on the standardized residuals in the normative dataset, which are computed as explained in the Assume. Homoscedasticity= argument documentation below. Default Alpha.Shapiro=0.05.

Assume.Homoscedasticity

Logical. The NormData package 'decides' whether the homoscedasticity assumption is valid based on the Levene or Breusch-Pagan tests (for models that only include qualitative independent variables versus models that include at least one quantitative independent variable, respectively). The Assume. Homoscedasticity= TRUE/FALSE argument can be used to overrule this decision process and 'force' the NormData package to assume or not assume homoscedasticity. When the argument

Assume.Homoscedasticity=TRUE is used, the argument Alpha.Homosc=0 is automatically used in the Stage.1() function call and thus the homoscedasticity assumption will never be rejected (because the p-value of the Levene or Breusch-Pagan test-statistics will always be larger than the specified $\alpha = 0$). When Assume.Homoscedasticity=FALSE is used, the argument Alpha.Homosc=1 is automatically used thus the homoscedasticity assumption will always be rejected (because the p-value of the Levene or Breusch-Pagan test-statistics will always be smaller than the specified $\alpha = 1$).

By default, the standardized residuals δ_i that are shown in the normality and outlier output sections of the results (and the plots, see [plot Stage.1](#page-0-0)) are computed based on the overall residual standard error when the homoscedasticity assumption is valid (i.e., as $\hat{\delta}_i = \frac{\hat{\epsilon}_i}{\hat{\sigma}_i^2}$, with $\hat{\sigma}_i^2$ corresponding to the overall residual standard error), or based on prediction-specific residual standard errors when the homoscedasticity assumption is invalid (i.e., as $\hat{\delta}_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}^2_{\varepsilon_i}}$, with $\hat{\sigma}^2_{\varepsilon_i}$ corresponding to e.g., a cubic polynomial variance prediction function $\hat{\sigma}_{\varepsilon_i}^2 =$ $\hat{\gamma}_0 + \hat{\gamma}_1 \hat{Y} + \hat{\gamma}_2 \hat{Y}^2 + \gamma_3 \hat{Y}^3$ when the mean structure of the model contains quantitiative independent variables).

Test.Assumptions

Logical. Should the model assumptions be evaluated for the specified model? Default Test.Assumptions=TRUE.

Outlier.Cut.Off

Outliers are evaluated based on the standardized residuals, which are computed as explained in the Assume.Homoscedasticity= argument documentation. The Outlier.Cut.Off= argument specifies the absolute value that is used as a threshold to detect outliers. Default Outlier.Cut.Off=4, so test scores with standardized residuals < -4 or > 4 are flagged as outliers.

Show.VIF Logical. Should the generalized VIF (Fox and Monette, 1992) be shown when the function summary() is applied to the fitted object? Default Show.VIF=TRUE. If all names of the independent variables in the fitted Stage 1 model contain the string 'Age' (e.g., Age, Age.2 and Age.3), a higher-order polynomial model for the mean structure is being fitted. For such models, multicollinearity diagnostics are essentially irrelevant (see Van der Elst, 2023) and in such cases the generalized VIF is not printed in the summary output. The generalized VIF is also not shown whenn there is only one independent variable in the model (because

multicollinearity relates to the linear association of two or more independent variables).

- GVIF.Threshold The threshold value to be used to detect multicollinearity based on the generalized VIF. Default GVIF.Threshold=10.
- Sandwich.Type When the homoscedasticity assumption is violated, so-called sandwich estimators (or heteroscedasticity-consistent estimators) for the standard errors of the regression parameters are used. For example, the sandwich estimator for the standard error of $\hat{\beta}_1$ in a simple linear regression model corresponds to

$$
\hat{\sigma}_{\beta_1} = \sqrt{\frac{\sum\limits_{i=1}^{N} \left(\left(X_i - \hat{\mu}_{X_i} \right)^2 \hat{\epsilon}_i^2 \right)}{\left(\sum\limits_{i=1}^{N} (X_i - \hat{\mu}_{X_i})^2 \right)^2}}
$$
. For multiple linear regression models, the sand-

wich estimators for the different independent variables $\hat{\sigma}_{\beta_0}$, $\hat{\sigma}_{\beta_1}$, ...correspond to the square roots of the diagonal elements of $\Sigma_\beta =$

$$
\left(\boldsymbol{X}^{\'}\boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\'}\begin{bmatrix} \hat{\varepsilon}_1^2 & 0 & \dots & 0 \\ 0 & \hat{\varepsilon}_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \hat{\varepsilon}_N^2 \end{bmatrix}\boldsymbol{X}\right)\left(\boldsymbol{X}^{\'}\boldsymbol{X}\right)^{-1}.
$$
 The sandwich-estimators that are shown in the above expressions are referred to as the Heteroscedasticity-

Consistent 0 estimator (or HC0 estimator), which is the first sandwich-estimator that was proposed in the literature. The HC0 sandwich-estimator is justified based on asymptotic theory, and its application thus requires large sample sizes. For smaller sample sizes of $N < 250$, the use of the HC3 estimator is recommended because the HC0 sandwich-estimator tends to be negatively biased (Long and Erwin, 2000). By default, the HC0 estimator is used. The argument Sandwich.Type= can be used to request another type of the heteroscedasticityconsistent estimator. For details on these estimators, see the vcovHC function of the sandwich package. If $N < 250$ and the homoscedasticity assumption is violated, a note will be given that the use of the HC3-estimator is recommended. To this end, the argument Sandwich.Type="HC3" can be added in the Stage.1() function call.

Alpha.CI.Group.Spec.SD.Resid

The α -level to be used for the CIs around the prediction-specific residual standard errors (when the homoscedasticity assumption is invalid and the model only contains qualitative independent variable). These CIs are used in the variance function plot. Default Alpha.CI.Group.Spec.SD.Resid=0.01.

Details

For details, see Van der Elst (2023).

Value

An object of class Stage.1 with components,

Stage.1 47

Author(s)

Wim Van der Elst

References

Fox, J. and Monette, G. (1992). Generalized collinearity diagnostics. *JASA, 87,* 178-183.

Long, J. S. and Ervin, L. H. (2000). Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. *The American Statistician, 54,* 217-224.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[plot Stage.1](#page-0-0), [Stage.2.AutoScore](#page-48-1), [Stage.2.NormScore](#page-51-1), [Stage.2.NormTable](#page-53-1)

Examples

```
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 4 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Conduct the Stage 1 analysis
Model.1.GCSE <- Stage.1(Dataset=GCSE,
    Model=Science.Exam~Gender)
summary(Model.1.GCSE)
plot(Model.1.GCSE)
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Add the variable Age.C (= Age centered) and its
# quadratic and cubic terms to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
Substitution$Age.C2 <- (Substitution$Age - 50)**2
Substitution$Age.C3 <- (Substitution$Age - 50)**3
```
Fit the full Stage 1 model

```
Substitution.Model.1 <- Stage.1(Dataset=Substitution,
  Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE+Age.C:LE+
   Gender:LE+Age.C:Gender, Alpha=0.005)
summary(Substitution.Model.1)
# Fit the model in which the non-significant Age.C:Gender
# interaction term is removed
Substitution.Model.2 <- Stage.1(Dataset=Substitution,
    Alpha=0.005,
   Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE+
    Age.C:LE+Gender:LE)
summary(Substitution.Model.2)
# Evaluate the significance of the Gender:LE interaction term
# GLT is used because the interaction involves multiple regression
# parameters
GLT.1 <- GLT(Dataset=Substitution, Alpha=0.005,
  Unrestricted.Model=LDST~Age.C+Age.C2+Age.C3+
      Gender+LE+Age.C:LE+Gender:LE,
   Restricted.Model=LDST~Age.C+Age.C2+Age.C3+
     Gender+LE+Age.C:LE)
summary(GLT.1)
# Fit the model in which the non-significant Gender:LE
# interaction term is removed
Substitution.Model.3 <- Stage.1(Dataset=Substitution,
    Alpha=0.005,
    Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE+Age.C:LE)
summary(Substitution.Model.3)
# Evaluate the significance of the Age:LE interaction
# using the General Linear Test framework
GLT.2 <- GLT(Dataset=Substitution,
    Unrestricted.Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE+Age.C:LE,
    Restricted.Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE, Alpha=0.005)
summary(GLT.2)
# Fit the model in which the non-significant Age_c:LE
# interaction term is removed
Substitution.Model.4 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+Age.C2+Age.C3+Gender+LE)
summary(Substitution.Model.4)
# Fit the model in which the non-significant Age.C3 term is removed
Substitution.Model.5 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+Age.C2+Gender+LE)
summary(Substitution.Model.5)
# Fit the model in which the non-significant Age.C2 term is removed
Substitution.Model.6 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+Gender+LE)
summary(Substitution.Model.6)
```

```
# Fit the model in which the non-significant main effect of Gender
# is removed
Substitution.Model.7 <- Stage.1(Dataset=Substitution,
 Alpha=0.005, Model=LDST~Age.C+LE)
summary(Substitution.Model.7)
plot(Substitution.Model.7, Normality = FALSE, Outliers = FALSE)
# Check the significance of LE using the GLT framework
GLT.3 <- GLT(Dataset=Substitution, Alpha=0.005,
    Unrestricted.Model=LDST~Age.C+LE,
    Restricted.Model=LDST~Age.C)
summary(GLT.3)
# Residual variance function. Substitution.Model.7 uses
# a cubic polynomial variance prediction function.
# Remove cubic Pred.Y term from Substitution.Model.7, so
# fit quadratic variance prediction function
Substitution.Model.8 <- Stage.1(Dataset=Substitution,
    Alpha=0.005, Model=LDST~Age.C+LE,
    Order.Poly.Var=2) # Order.Poly.Var=2 specifies a quadratic polynomial
                       # for the variiance prediction function
summary(Substitution.Model.8)
plot(Substitution.Model.8, Normality = FALSE, Outliers = FALSE)
# Remove quadratic Pred.Y term, so fit linear variance
# prediction function
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
    Alpha=0.005, Model=LDST~Age.C+LE,
    Order.Poly.Var=1) # Order.Poly.Var=1 specifies a linear polynomial
                      # for the variiance prediction function
# Final Stage 1 model
summary(Substitution.Model.9)
plot(Substitution.Model.9)
```
Stage.2.AutoScore *Make an automatic scoring sheet*

Description

This function is useful to construct an automatic scoring sheet that implements the Stage 2 normative conversion approach in a spreadsheet. In particular, a spreadsheet will be created with three tabs that should be copy-pasted to the different sections of the Model details tab of the template file. For details, see Van der Elst (2023).

Usage

```
Stage.2.AutoScore(Stage.1.Model, Assume.Homoscedasticity,
  Assume.Normality, Folder, NameFile="NormSheet.xlsx",
 verbose=TRUE)
```
Arguments

Stage.1.Model A fitted object of class Stage.1 that should be written to the Excel sheet (i.e., the final Stage 1 model).

Assume.Homoscedasticity

Logical. Should homoscedasticity be assumed? By default, homoscedasticity is assumed when the p-value of the Levene or Breusch-Pagan test for the fitted Stage 1 model is above the specified α -level in the Stage.1() function call. When homoscedasticity is assumed, an overall residual standard error is written to the spreadsheet. When homoscedasticity is not assumed, prediction-specific residual standard errors are written to the spreadsheet. The default decision procedure can be overruled by means of the arguments

Assume.Homoscedasticity=TRUE or Assume.Homoscedasticity=FALSE.

Assume.Normality

Logical. Should normality of the standardized errors be assumed? By default, normality is assumed when the p -value of the Shapiro-Wilk test for the fitted Stage 1 model is above the specified α -level in the Stage.1() function call. When normality is assumed, the CDF of the standard normal distribution is written to the spreadsheet. When normality is not assumed, the CDF of the standardized residuals in the normative sample is written to the speeadsheet. The default decision procedure can be overruled by means of the arguments argument Assume.Normality=TRUE or Assume.Normality=FALSE.

Folder The folder where the spreadsheet file should be saved.

- NameFile The name of the file in which the normative tables should be saved. Default NameFile="NormTable.xlsx"
- verbose A logical value indicating whether verbose output should be generated.

Details

For details, see Van der Elst (2023).

Value

An object of class Stage.2.AutoScore with components,

Mean.Structure The mean prediction function.

Residual.Structure

The variance prediction function.

Percentiles.Delta

A table of the standardized residuals and their corresponding estimated percentile ranks (based on the CDF of the standard normal distribution or the CDF of the standardized residuals in the normative sample, see above).

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.1](#page-43-1), [Stage.2.NormTable](#page-53-1), [Stage.2.AutoScore](#page-48-1)

```
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 4 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Conduct the Stage 1 analysis
Model.1.GCSE <- Stage.1(Dataset=GCSE,
  Model=Science.Exam~Gender)
summary(Model.1.GCSE)
plot(Model.1.GCSE, Add.Jitter = .2)
# Write the results to a spreadsheet file
Stage.2.AutoScore(Stage.1.Model=Model.1.GCSE,
  Folder=tempdir(), # Replace tempdir() by the desired folder
  NameFile="GCSE.Output.xlsx")
# Copy-paste the information in GCSE.Output.xlsx to the
# template file, as detailed in Van der Elst (2023)
# Replicate the Stage 1 results that were obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ---------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Add the variable Age.C (= Age centered) to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Final Stage 1 model
summary(Substitution.Model.9)
plot(Substitution.Model.9)
# Write the results to a spreadsheet file
Stage.2.AutoScore(Stage.1.Model=Substitution.Model.9,
   Folder=tempdir(), # Replace tempdir() by the desired folder
```

```
NameFile="LDST.Output.xlsx")
# Copy-paste the information in LDST.Output.xlsx to the
# template file, as detailed in Van der Elst (2023)
```
Stage.2.NormScore *Convert a raw score to a percentile rank*

Description

The function Stage.2.NormScore() can be used to convert the raw test score of a tested person Y_0 into a percentile rank $\hat{\pi}_0$ (taking into account specified values of the independent variables).

Usage

Stage.2.NormScore(Stage.1.Model, Assume.Homoscedasticity, Assume.Normality, Score, Rounded=TRUE)

Arguments

Stage.1.Model A fitted object of class Stage.1 that should be used to conduct the normative conversions.

Assume.Homoscedasticity

Logical. Should homoscedasticity be assumed in conducting the normative conversion? By default, homoscedasticity is assumed when the p-value of the Levene or Breusch-Pagan test for the fitted Stage 1 model is above the specified α -level in the Stage.1() function call. When homoscedasticity is assumed, an overall residual standard error is used in the normative conversions. When homoscedasticity is not assumed, prediction-specific residual standard errors used. The default decision procedure can be overruled by means of the arguments argument Assume.Homoscedasticity=TRUE or Assume.Homoscedasticity=FALSE.

Assume.Normality

Logical. Should normality of the standardized errors be assumed in conducting the normative conversion? By default, normality is assumed when the p -value of the Shapiro-Wilk test for the fitted Stage 1 model is above the specified α level in the Stage.1() function call. When normality is assumed, the Y_0 to $\hat{\pi}_0$ conversion is based on the CDF of the standard normal distribution. When normality is not assumed, this conversion is based on the CDF of the standardized residuals in the normative sample. The default decision procedure can be overruled by means of the arguments argument Assume.Normality=TRUE or Assume.Normality=FALSE.

Score A list that contains the test score Y_0 to be converted into a percentile rank and the values for the relevant independent variable(s). For example, the argument Score=list(Science.Exam=30, Gender="F") specifies that a female student obtained a raw Science Exam score Y_0 . Observe that quotes are used to refer to a female student (i.e., "F"). This is done because the string F (without quotes) is shorthand notation for the logical indicator FALSE in R. If no

Details

For details, see Van der Elst (2023).

Value

An object of class Stage.2.NormScore with components,

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormTable](#page-53-1), [Stage.2.AutoScore](#page-48-1), [Bootstrap.Stage.2.NormScore](#page-1-1)

Examples

```
# Replicate the normative conversion that was obtained in
# Case study 1 of Chapter 3 in Van der Elst (2023)
# (science exam score = 30 obtained by a female)
# -------------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
  Model=Science.Exam~Gender)
# Stage 2: Convert a science exam score = 30 obtained by a
# female into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(Stage.1.Model=Model.1.GCSE,
  Score=list(Science.Exam=30, Gender="F"))
summary(Normed_Score)
plot(Normed_Score)
# Replicate the normative conversion that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# (LDST score = 40 obtained by a 20-year-old
# test participant with LE=Low)
# -------------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
  Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
summary(Substitution.Model.9)
# Convert an LDST score = 40 obtained by a
# 20-year-old test participant with LE=Low
# into a percentile rank (point estimate)
Normed_Score <- Stage.2.NormScore(
  Stage.1.Model=Substitution.Model.9,
  Score=list(LDST=40, Age.C=20-50, LE = "Low"))
summary(Normed_Score)
plot(Normed_Score)
```
Stage.2.NormTable *Derive a normative table*

Description

This function allows for deriving a normative table that shows percentile ranks $\hat{\pi}_0$ that correspond to a wide range of raw test scores Y_0 (stratified by the relevant independent variables).

Usage

```
Stage.2.NormTable(Stage.1.Model, Assume.Homoscedasticity,
Assume.Normality, Grid.Norm.Table, Test.Scores, Digits=6,
Rounded=TRUE)
```
Arguments

Stage.1.Model A fitted object of class Stage.1 that should be used to derive the normative table.

Assume.Homoscedasticity

Logical. Should homoscedasticity be assumed when deriving the normative table? By default, homoscedasticity is assumed when the p-value of the Levene or Breusch-Pagan test for the fitted Stage 1 model is above the specified α -level in the Stage.1() function call. When homoscedasticity is assumed, an overall residual standard error is used in the derivation of the normative table. When homoscedasticity is not assumed, prediction-specific residual standard errors used. The default decision procedure can be overruled by means of the arguments argument Assume.Homoscedasticity=TRUE or Assume.Homoscedasticity=FALSE.

Assume.Normality

Logical. Should normality of the standardized errors be assumed when deriving the normative table? By default, normality is assumed when the p -value of the Shapiro-Wilk test for the fitted Stage 1 model is above the specified α level in the Stage.1() function call. When normality is assumed, the Y_0 to $\hat{\pi}_0$ conversions in the normative table are based on the CDF of the standard normal distribution. When normality is not assumed, these conversions are based on the CDF of the standardized residuals in the normative sample. The default decision procedure can be overruled by means of the arguments argument Assume.Normality=TRUE or Assume.Normality=FALSE.

Grid.Norm.Table

A data. frame that specifies the name of the independent variable(s) (e.g., Gender) and the levels (e.g., "F" and "M") or values (e.g., Age.C=seq(from=20, to=80, by=1)-50)) for which the estimated percentile ranks should be tabulated. Both the name of the independent variable and the coding scheme that is specified in the Grid.Norm.Table=... argument should exactly match the name of the independent variable and the original coding scheme that was used in the Stage.1() function call. For example, if the variable name Gender with original coding scheme F and M was used in the Stage.1() function call, the same should be done in the Stage.2.NormTable() function call. So Grid.Norm.Table= data.frame(Gender=c("F", "M")) should be used, and not e.g., Grid.Norm.Table= data.frame(GenderM=c($0,1$)). Observe that quotes are used to refer to a female student (i.e., "F"). This is done because the string F (without quotes) is shorthand notation for the logical indicator FALSE in R. If no quotes are used, an

Details

For details, see Van der Elst (2023).

Value

An object of class Stage.2.NormTable with components,

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormScore](#page-51-1), [Stage.2.AutoScore](#page-48-1), [Bootstrap.Stage.2.NormScore](#page-1-1)

```
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 3 in Van der Elst (2023)
# -----------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
    Model=Science.Exam~Gender)
# Make a normative table for raw Science Exam scores = 10,
# 11, ... 85, stratified by Gender
NormTable.GCSE <- Stage.2.NormTable(Stage.1.Model=Model.1.GCSE,
  Test.Scores=c(10:85),
  Grid.Norm.Table=data.frame(Gender=c("F", "M")))
summary(NormTable.GCSE)
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
    Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Make a normative table for LDST scores = 10, 12, ... 56,
# stratified by Age and LE
NormTable.LDST <- Stage.2.NormTable(
  Stage.1.Model=Substitution.Model.9,
  Test.Scores=seq(from=10, to=56, by=2),
  Grid.Norm.Table=expand.grid(Age.C=seq(from=-30, to=30, by=1),
  LE=c("Low", "Average", "High")))
```


Description

This dataset contains the scores of the Trait Anger scale of the STAS. The test participants were 316 first-year psychology students from a university in the Dutch speaking part of Belgium. Participation was a partial fulfillment of the requirement to participate in research. The sample consists of 73 males and 243 females, reflecting the gender proportion among psychology students. The average age was 18.4 years. The data originally come from the package psychotools, dataset VerbalAgression.

For more info, see https://cran.r-project.org/web/packages/psychotools/psychotools.pdf.

Usage

data(STAS)

Format

A data.frame with 316 observations on 3 variables.

Id The Id number of the student.

Gender The gender of the student, coded as a factor.

Anger The Trait Anger scale score of the STAS.

Substitution *Substitution test data*

Description

Substitution tests are speed-dependent tasks that require the participant to match particular signs (symbols, digits, or letters) to other signs within a specified time period. The LDST is an adaptation of earlier substitution tests, such as the Digit Symbol Substitution Test (DSST; Wechsler, 1981) and the Symbol Digit Modalities Test (SDMT; Smith, 1982). The LDST differs from other substitution tests in that the key consists of 'over-learned' signs, i.e., letters and digits. These are simulated data that are based on the results described in Van der Elst *et al.* (2006) (see Table 2).

Usage

data(Substitution)

TMAS 59

Format

A data.frame with 1765 observations on 5 variables.

Id The Id number of the participant.

Age The age of the participant, in years.

Gender The gender of the participant, coded as a factor with levels Male and Female.

- LE The Level of Education of the test participant, coded as a factor with levels Low, Average and High.
- LDST The test score on the LDST (written version), i.e., the number of correct substitutions made in 60 seconds. A higher score reflects better performance.

TMAS *TMAS data*

Description

This dataset contains the scores of the Taylor Manifest Anxiety Scale (TMAS; Taylor, 1953), administered online. A total of 523 test participants completed the questionnaire. The TMAS scale score ranges between 0 and 50, with lower scores corresponding to higher levels of anxiety.

Usage

data(TMAS)

Format

A data.frame with 523 observations on 3 variables.

Id The Id number of the test participant.

Gender The gender of the test participant, coded as a factor.

Score The TMAS score. A higher value is iindicative for less anxiety.

References

Taylor, J. (1953). A personality scale of manifest anxiety. *The Journal of Abnormal and Social Psychology, 48(2),* 285-290.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Description

This function conducts Tukey's Honest Significance Difference (HSD; Tukey, 1949) test that allows for making post hoc comparisons of the group means. Tukey's HSD can only be conducted when the mean structure of the Stage 1 model only contains qualitative independent variables (i.e., when the fitted regression model is essentially an ANOVA).

Usage

Tukey.HSD(Stage.1.Model, ...)

Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Tukey, J. (1949). Comparing individual means in the Analysis of Variance. *Biometrics, 5,* 99-114. Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[plot.Tukey.HSD](#page-37-1)

Examples

```
data(Personality)
Model.Openness <- Stage.1(Dataset = Personality, Model = Openness ~ LE)
# conduct post hoc comparisons for the levels of education
Tukey.Openness <- Tukey.HSD(Model.Openness)
summary(Tukey.Openness)
plot(Tukey.Openness)
```
conduct post hoc comparisons for the levels of education by education combinations data(Substitution)

 VLT 61

```
Model.Substitution <- Stage.1(Dataset = Substitution, Model = LDST ~ LE*Gender)
Tukey.Substitution <- Tukey.HSD(Model.Substitution)
summary(Tukey.Substitution)
plot(Tukey.Substitution)
```
VLT *Verbal Learning Test data*

Description

This dataset contains the Total Recall scores of the Verbal Learning Test (VLT). A total of 1460 test-participants participated in the study. These are simulated data based on the results described in Van der Elst *et al.* (2005).

Usage

data(VLT)

Format

A data.frame with 1460 observations on 5 variables.

Id The Id number of the test participant.

Age The age of the test participant (in years).

Gender The gender of the test participant, coded as a factor.

LE The level of education of the test participant.

Total.Recall The Total Recall score. A higher score is indicative for better verbal memory ability.

References

Van der Elst *et al.* (2005). Rey's Verbal Learning Test: Normative data for 1,855 healthy participants aged 24-81 years and the influence of age, sex, education, and mode of presentation. *Journal of the International Neuropsychological Society, 11,* 290-302.

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

Description

The function Stage.2.NormTable() allows for deriving a normative table that shows percentile ranks $\hat{\pi}_0$ that correspond to a wide range of raw test scores Y_0 (stratified by the relevant independent variables). The raw R output format that is provided by the Stage.2.NormTable() function is not always convenient, especially when a large number of test scores are tabulated and the table is spread out over several lines. The function WriteNormTable() can be used to export the normative table to a .txt, .csv or .xlsx file. Such a file can then be opened in a spreadsheet (such as Google Sheets or LibreOffice), where the normative table can be put in a more user-friendly format.

Usage

```
WriteNormTable(NormTable, Folder, NameFile="NormTable.xlsx",
verbose=TRUE)
```
Arguments

Value

No return value, called for side effects.

Author(s)

Wim Van der Elst

References

Van der Elst, W. (2024). *Regression-based normative data for psychological assessment: A handson approach using R.* Springer Nature.

See Also

[Stage.2.NormTable](#page-53-1)

WriteNormTable 63

```
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 3 in Van der Elst (2023)
# -----------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
    Model=Science.Exam~Gender)
# Make a normative table for raw Science Exam scores = 10,
# 11, ... 85, stratified by Gender
NormTable.GCSE <- Stage.2.NormTable(Stage.1.Model=Model.1.GCSE,
    Test.Scores=c(10:85),
    Grid.Norm.Table=data.frame(Gender=c("F", "M")))
summary(NormTable.GCSE)
# Write the normative table to the user's computer
WriteNormTable(NormTable=NormTable.GCSE,
     NameFile="NormTable.GCSE.xlsx",
     Folder=tempdir()) # Replace tempdir() by the desired folder
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
   Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Make a normative table for LDST scores = 10, 12, ... 56,
# stratified by Age and LE
NormTable.LDST <- Stage.2.NormTable(
  Stage.1.Model=Substitution.Model.9,
  Test.Scores=seq(from=10, to=56, by=2),
  Grid.Norm.Table=expand.grid(Age.C=seq(from=-30, to=30, by=1),
     LE=c("Low", "Average", "High")))
# Write the normative table to the user's computer
WriteNormTable(NormTable=NormTable.LDST,
  NameFile="NormTable.LDST.xlsx",
  Folder=tempdir()) # Replace tempdir() by the desired folder
```
Index

∗ Assumption checks plot Stage.1, [32](#page-31-0) Stage.1, [44](#page-43-0) ∗ Auutomatic scoring sheet Stage.2.AutoScore, [49](#page-48-0) ∗ Bootstrap Bootstrap.Stage.2.NormScore, [2](#page-1-0) Bootstrap.Stage.2.NormTable, [5](#page-4-0) ∗ Breusch-Pagann Test Stage.1, [44](#page-43-0) ∗ Clustering ICC, [20](#page-19-0) plot ICC, [30](#page-29-0) ∗ Confidence interval Bootstrap.Stage.2.NormScore, [2](#page-1-0) Bootstrap.Stage.2.NormTable, [5](#page-4-0) ∗ Dataset Fluency, [15](#page-14-0) GCSE, [17](#page-16-0) Personality, [22](#page-21-0) STAS, [58](#page-57-0) Substitution, [58](#page-57-0) TMAS, [59](#page-58-0) VLT, [61](#page-60-0) ∗ Diagnostics plot Stage.1, [32](#page-31-0) ∗ Exploratory Densities, [12](#page-11-0) ∗ Explore data ExploreData, [13](#page-12-0) Plot.Scatterplot.Matrix, [39](#page-38-0) PlotFittedPoly, [41](#page-40-0) ∗ Export normative table WriteNormTable, [62](#page-61-0) ∗ F test-statistic GLT, [18](#page-17-0) ∗ Fitted model GLT, [18](#page-17-0) Stage.1, [44](#page-43-0)

∗ Fluency Fluency, [15](#page-14-0) ∗ Fractional polynomials Fract.Poly, [16](#page-15-0) ∗ GCSE GCSE, [17](#page-16-0) ∗ GLT GLT, [18](#page-17-0) ∗ General Linear Test GLT, [18](#page-17-0) ∗ Heteroscedasticity Sandwich, [43](#page-42-0) ∗ Homoscedasticity test plot Stage.1, [32](#page-31-0) Stage.1, [44](#page-43-0) ∗ Intra class correlation ICC, [20](#page-19-0) plot ICC, [30](#page-29-0) ∗ Levels Levels, [21](#page-20-0) ∗ Levene Test Stage.1, [44](#page-43-0) ∗ Mean prediction function Stage.1, [44](#page-43-0) ∗ Model fit Check.Assum, [7](#page-6-0) CheckFit, [9](#page-8-0) plot CheckFit, [25](#page-24-0) ∗ Multicollinearity Stage.1, [44](#page-43-0) ∗ Normality test plot Stage.1, [32](#page-31-0) Stage.1, [44](#page-43-0) ∗ Normative conversion Stage.2.NormScore, [52](#page-51-0) ∗ Normative table Bootstrap.Stage.2.NormScore, [2](#page-1-0) Bootstrap.Stage.2.NormTable, [5](#page-4-0) Stage.2.NormTable, [54](#page-53-0)

INDEX 65

∗ Outliers plot Stage.1, [32](#page-31-0) Stage.1, [44](#page-43-0) ∗ Percentile rankss Stage.2.NormScore, [52](#page-51-0) ∗ Percentile ranks Bootstrap.Stage.2.NormTable, [5](#page-4-0) Stage.2.AutoScore, [49](#page-48-0) Stage.2.NormTable, [54](#page-53-0) ∗ Percentile rank Bootstrap.Stage.2.NormScore, [2](#page-1-0) ∗ Personality Personality, [22](#page-21-0) ∗ Plot ExploreData plot ExploreData, [28](#page-27-0) ∗ Plot ICC ICC, [20](#page-19-0) plot ICC, [30](#page-29-0) ∗ Plot NormScore plot Bootstrap.Stage.2.NormScore, [23](#page-22-0) plot Stage.2.NormScore, [36](#page-35-0) ∗ Plot Densities, [12](#page-11-0) ∗ Polynomial function Stage.1, [44](#page-43-0) ∗ Regression-based normative data Bootstrap.Stage.2.NormScore, [2](#page-1-0) Bootstrap.Stage.2.NormTable, [5](#page-4-0) plot Bootstrap.Stage.2.NormScore, [23](#page-22-0) plot Stage.1, [32](#page-31-0) plot Stage.2.NormScore, [36](#page-35-0) Stage.1, [44](#page-43-0) Stage.2.AutoScore, [49](#page-48-0) Stage.2.NormScore, [52](#page-51-0) Stage.2.NormTable, [54](#page-53-0) ∗ Residual plots plot Stage.1, [32](#page-31-0) ∗ STAS STAS, [58](#page-57-0) ∗ Sandwich estimator Sandwich, [43](#page-42-0) Stage.1, [44](#page-43-0) ∗ Shapiro-Wilk test Stage.1, [44](#page-43-0) ∗ Spreadsheet Stage.2.AutoScore, [49](#page-48-0)

∗ Stage 1 plot Stage.1, [32](#page-31-0) Stage.1, [44](#page-43-0) ∗ Stage 2 Stage.2.AutoScore, [49](#page-48-0) Stage.2.NormScore, [52](#page-51-0) Stage.2.NormTable, [54](#page-53-0) ∗ Substitution Substitution, [58](#page-57-0) ∗ Summary statistics ExploreData, [13](#page-12-0) ∗ TMAS TMAS, [59](#page-58-0) ∗ Tukey HSD plot Tukey.HSD, [38](#page-37-0) Tukey.HSD, [60](#page-59-0) ∗ VIF Stage.1, [44](#page-43-0) ∗ VLT VLT, [61](#page-60-0) ∗ Variance prediction function Stage.1, [44](#page-43-0) Bootstrap.Stage.2.NormScore, [2,](#page-1-0) *[24](#page-23-0)*, *[53](#page-52-0)*, *[57](#page-56-0)* Bootstrap.Stage.2.NormTable, [5](#page-4-0) Check.Assum, [7](#page-6-0) CheckFit, [9](#page-8-0) Coding, [11](#page-10-0) Densities, [12](#page-11-0) ExploreData, [13,](#page-12-0) *[29](#page-28-0)* Fluency, [15](#page-14-0) Fract.Poly, [16](#page-15-0) GCSE, [17](#page-16-0) GLT, [18](#page-17-0) ICC, [20,](#page-19-0) *[32](#page-31-0)* Levels, [21](#page-20-0) Personality, [22](#page-21-0) plot Bootstrap.Stage.2.NormScore, [23](#page-22-0) plot CheckFit, [25](#page-24-0) plot ExploreData, [28](#page-27-0)

plot ICC, [30](#page-29-0)

66 **INDEX**

```
32
36
plot Tukey.HSD
, 38
plot.Bootstrap.Stage.2.NormScore
(plot
        Bootstrap.Stage.2.NormScore
)
,
        23
plot.CheckFit
, 10
, 26
plot.CheckFit
(plot CheckFit
)
, 25
plot.ExploreData
(plot ExploreData
)
, 28
plot.ICC
, 21
plot.ICC
(plot ICC
)
, 30
39
plot.Stage.1
(plot Stage.1
)
, 32
plot.Stage.2.NormScore
(plot
        Stage.2.NormScore
)
, 36
plot.Tukey.HSD
, 60
plot.Tukey.HSD
(plot Tukey.HSD
)
, 38
PlotFittedPoly
, 41
Sandwich
, 43
Stage.1
,
8
, 10
, 26
, 43
, 44
, 51
Stage.2.AutoScore
, 47
, 49
, 51
, 53
, 57
Stage.2.NormScore
,
3
,
4
, 37
, 47
, 52
, 57
Stage.2.NormTable
,
6
, 47
, 51
, 53
, 54
, 62
58
```
Substitution, [58](#page-57-0)

Tukey.HSD, [39](#page-38-0), [60](#page-59-0)

WriteNormTable, [62](#page-61-0)

TMAS, [59](#page-58-0)

VLT , [61](#page-60-0)